NAME:	***************************************
INDEX NO:	SIGNATURE:
545/2 Chemistry Paper 2	ZASSHU)
2 Hours	NTUNGAMO

ASSOCIATION OF SECONDARY SCHOOLS HEADTEACHERS OF UGANDA (ASSHU) NTUNGAMO

NTUNGAMO DISTRICT JOINT MOCK EXAMINATIONS 2023

Uganda Certificate of Education

CHEMISTRY 545/2

PAPER 2

DURATION: 2 Hours

INSTRUCTIONS TO CANDIDATES

Section A consists of 10 structured questions. Answer ALL questions in this section. Answers to these questions MUST be written in the spaces provided.

Section ${\it B}$ consists of 4 semi-structured questions. Answer any ${\it two}$ questions from this section. Answers to these questions must be written in the answer booklet(s) provided.

In both Sections, all the working must be clearly shown.

Where necessary;

1 mole of gas occupies 24l at room temperature.

1 mole of gas occupies 22.4l at s.t.p.

For Examiner's Use Only

1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total
	-		-	-	-	-	-	-	-	700	100			

SECTION A: (50 MARKS)

Answer all questions in this Section.

(i) C	Oxygen and nitrogen	(1 mk)
(ii) Ir	ron (II) Chloride and Iron (II) oxide.	(1 mk)
 Give a rea	ason why it is possible to separate the mixtu	re in (a) (ii) using the method
you stated		(1 mk)
	contains mainly Sodium Chloride and trace	
state one	practical method that can be used to obtain	the following from sea water.
(i) (Chlorine	(1 mk)
	A reasonably pure sample of Sodium Chloric	
 . Table 1	A reasonably pure sample of Sodium Chloric below shows the group and period in the I belong. Study the table and answer the que	Periodic Table to which elements
 . Table 1	below shows the group and period in the I	Periodic Table to which elements
. Table 1	below shows the group and period in the I belong. Study the table and answer the que	Periodic Table to which elements
. Table 1 and Y b	below shows the group and period in the I belong. Study the table and answer the que	Periodic Table to which elements

ator	n of X.	(1 mk)
c) Elen	nent X reacted with element Y to form a compound Z .	
(i)	Using the outermost shell electrons only, draw a diagram	n to show
	how Z is formed.	(1 mk)
	tance greete dry Carbondrost de anti-give du secution	
(ii)	State the type of bond in:	
	Z	(1 mk)
	atoms of X	(1 mk)
	1. U=101	(3 mkg)
	1, 0=16)	(3 mks)
	1, 0–10)	(3 mks)
(ii) D	Determine the molecular formula of T	
(ii) D	Determine the molecular formula of T	(3 mks)
(ii) [Determine the molecular formula of T	(1 mk)

(ii) Scate what was observed on the Litmus Paper.	(1 mk)
	- 10 mm
(a) Write an ionic equation for the reaction that occurs in the La	boratory
preparation of carbondioxide.	(1 mk)
(b) Name a substance used to dry Carbondioxide and give a rea	ason for
your answer.	(2 mks)
(c) State; (i) Why Carbondioxide is used in fire extinguishers?	(1 mk)
(ii) The effect of increased concentration of Carbondioxic	de on the
environment.	(1 mk)
(a) What is meant by the term had water?	(1 mk)
(b) Name two cations and two anions present in hard water. (i) Cations	
(i) Cations	(1 mk)
(same to the formation has been all the formation of the	(1 mk)

(c) Ba	mple of hard water. State what was observed.	(1 mk)
An Irot	spoon was coated with Copper atoms by electrol	ysis.
(a) Nan		
	Anode used	(1/ -12
(i)	Cathode used	,
(ii) (iii)	Electrolyte used	. ,
(b) Writ	te equation for the reaction that took place at the;	
(i)	anode	(1 mk)
(ii)	cathode	(1 mk)
(c) (i) N	Name the process that took place at the Cathode.	(½ mk)
(ii) St	tate one use of the process in (c)(i).	(½ mk)
Chloride with Cald	a gas is prepared in the Laboratory by heating a and Calcium Hydroxide. The gas evolved is passium Oxide before it is collected using upward de Vrite an equation for the reaction that leads to the	sed through a tower packed elivery.
(ii) St	ate why Ammonia is passed through a tower pa	acked with Calcium Oxide. (½ mk)

(iii) Give a reason why Ammonia is collected by upward delivery	(½ mk)
method.	
(b)(i) Name a reagent that can be used to identify Ammonia gas.	(1 mk)
(ii) State what would be observed if Ammonia was treated with the reagent you named in (b)(i).	(1 mk)
(c) Name the catalyst used in the oxidation of Ammonia during the manufact	ure
of Nitric acid.	(½ mk).
The molecular formular of an organic compound, \mathbf{M} is C_2H_6 . (a) (i) Write the structural formula of \mathbf{M} .	(1 mk)
(ii) Name M	(1mk)
(iii) Name the group of organic compounds to which M belongs.	(½ mk)
(b) It is not wise to burn M in a living room with closed windows and doors. Explain.	
	(1 mk)
(c) State one use of M.	
	(1 mk)

Hydrochloric acid reacts with Sodium Sulphite to form a gas ${f Q}$. (a) Identify ${f Q}$	thousey per-
a) identity &	(1 mk)
b) State the conditions under which the reaction takes place.	(1 mk)
c) Write an ionic equation for the reaction leading to the form	ation of Q . (4 mks)
d)(i) Name one reagent that can be used to identify Q .	(½ mk)
(ii) State what would be observed if ${f Q}$ was tested with the	reagent
you have named in (d)(i).	Sugarit
	(1 mk
a) State what is meant by the term enthalpy of combustion.	(1 mk)
a) State what is meant by the term enthalpy of combustion.	(1 mk)
(a) State what is meant by the term enthalpy of combustion. (b) Carbon burns in oxygen according to the following equat	(1 mk)
a) State what is meant by the term enthalpy of combustion. b) Carbon burns in oxygen according to the following equat	(1 mk)
(a) State what is meant by the term enthalpy of combustion. (b) Carbon burns in oxygen according to the following equat $C_{(s)} + O_{2_{(g)}} \longrightarrow CO_{2_{(g)}} \Delta H = -393 k J mol^{-1}$ Calculate the; (i) Amount of heat evolved when 3.6g of carbon is but	(1 mk)
a) State what is meant by the term enthalpy of combustion. b) Carbon burns in oxygen according to the following equat $C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)} \Delta H = -393 k J mol^{-1}$ Calculate the;	(1 mk)
(a) State what is meant by the term enthalpy of combustion. (b) Carbon burns in oxygen according to the following equat $C_{(s)} + O_{2_{(g)}} \longrightarrow CO_{2_{(g)}} \Delta H = -393 k J mol^{-1}$ Calculate the; (i) Amount of heat evolved when 3.6g of carbon is but	(1 mk) ion:

(ii)		would be required to produce 78.6	kJ
	of heat.		
	(1 mole of gas occupies 22.4 o	lm ³ at s.t.p)	(2 mks)

	***************************************		***************************************
	***************************************		••••••
	SEC	CTION B (30 MARKS)	
	Answer any two	o questions from this Section.	
11. (a) Defi	ne the term salt.		(1 mls)
		preparations of the following salts	(1 mk)
	Sodium Sulphate	(1 ½ mks)	•
(ii)	Iron (III) Chloride	(1 ½ mks)	
0	Vith the aid of an equation, des f Lead (II) Nitrate crystals can rom Lead (II) Oxide.	scribe how a pure dry sample be prepared in the Laboratory star	ting (6 mks)
	en Lead (II) Nitrate is heated sowing equation:	trongly, it decomposes according to	the
2PI	$b(NO_3)_{2(s)} \longrightarrow 2PbO_{(s)}$	$O_{2(g)} + 4NO_{2(g)} + O_{2(g)}$	
of	gaseous products at room ten		
(Pb	= 207, N = 14, 0 = 16; 1 mole	e of gas occupies 14l at room tempe	rature) (2 mks)
	Name one reagent that can be iminium ions and Lead (II) ion	oe used to distinguish between ns.	(½ mk)
(ii) St	ate what would be observed a	and write equation for the reaction	
th	at takes place if any, when the	reagent you named in (c)(i) is trea	ted
se	parately with Aluminium Ions	and Lead (II) Ions.	(2½ mks)

12. (a) Outline the Large Scale preparation of oxygen.	(4 mks)
(b) (i) Draw a labelled diagram of the set up of the apparatus for the Laboratory preparation of oxygen using Sodium Peroxide.	(2½ mks)
(ii) Write equation for the reaction leading to the production of oxygen in (i).	(1½ mks)
(c) State one biological use of oxygen.	(1 mk)
(d) State the conditions and write the equation for the reaction of oxy (i) Sulphur (ii) Iron	gen and; (2 mks) (4 mks)
13.(a) (i) Describe how Sodium Hydroxide can be manufactured using cathode cell. [Your answer should include equations of the reactions, but not be compared to the control of the reactions.	ot diagram] (7 mks)
(ii) State one use of the product formed at the anode and one use of the byproduct.	(2 mks)
(iii) State one industrial use of Sodium Hydroxide.	(1 mk)
(b) State how Sodium Hydroxide can react with the following substant and in each case write equation for the reaction:	nnces,
(i) Sulphuric acid (ii) Aluminium Sulphate solution	(2 mks) (3 mks)
14. (a) What is meant by rate of a chemical reaction?	(1 mk)
(b) State two ways by which the rate of a reaction between Magnesium ribbon and dilute Sulphuric acid can be determine	ned. (2 mks)
(c) Explain how particle size affects the rate of a reaction.	(2 mks)

(d) The table below shows the variation in the concentration of Hydrogen Peroxide with time when a sample of Hydrogen Peroxide was mixed with Iron (III) Chloride at room temperature.

Concentration of hydrogen peroxide (mol dm ⁻³)	0.05	0.10	0.15	0.20	0.25
Time, t (s)	53	26	17	13	10.5
$\frac{1}{t}(s^{-1})$		#Payx	o to mai la	a Contract	inter sted

(i)	Copy and complete the table above by computing and filling in the values of $\frac{1}{2}$	is (i)
	values of $\frac{1}{t}$	(2½ mks)
(ii)	Plot a graph of $\frac{1}{t}$ against concentration of hydrogen peroxide.	(3 ½ mks)
(iii)	Using your graph, deduce how the rate of the reaction varies with the concentration of hydrogen peroxide.	(1 mk)
(iv)	Determine the slope of the graph.	(2 mks)

(v) State **two** ways by which the rate of the reaction in (b) could be made faster. (1 mk)

END